Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
China Journal of Chinese Materia Medica ; (24): 3215-3223, 2023.
Article in Chinese | WPRIM | ID: wpr-981458

ABSTRACT

This study aimed to investigate the relationship between coagulating cold and blood stasis syndrome and glycolysis, and observe the intervention effect of Liangfang Wenjing Decoction(LFWJD) on the expression of key glycolytic enzymes in the uterus and ovaries of rats with coagulating cold and blood stasis. The rat model of coagulating cold and blood stasis syndrome was established by ice-water bath. After modeling, the quantitative scoring of symptoms were performed, and according to the scoring results, the rats were randomly divided into a model group and LFWJD low-, medium-and high-dose groups(4.7, 9.4, 18.8 g·kg~(-1)·d~(-1)), with 10 in each group. Another 10 rats were selected as the blank group. After 4 weeks of continuous administration by gavage, the quantitative scoring of symptoms was repeated. Laser speckle flowgraphy was used to detect the changes of microcirculation in the ears and uterus of rats in each group. Hematoxylin-eosin(HE) staining was used to observe the pathological morphology of uterus and ovaries of rats in each group. The mRNA and protein expressions of pyruvate dehydrogenase kinase 1(PDK1), hexokinase 2(HK2) and lactate dehydrogenase A(LDHA) in the uterus and ovaries of rats were examined by real-time quantitative polymerase chain reaction(RT-qPCR) and Western blot, respectively. The rats in the model group showed signs of coagulating cold and blood stasis syndrome, such as curl-up, less movement, thickened veins under the tongue, and reduced blood perfusion in the microcirculation of the ears and uterus, and HE staining revealed a thinning of the endometrium with disorganized arrangement of epithelial cells and a decrease in the number of ovarian follicles. Compared with the model group, the treatment groups had alleviated coagulating cold and blood stasis, which was manifested as red tongue, reduced nail swelling, no blood stasis at the tail end as well as increased blood perfusion of the microcirculation in the ears and uterus(P<0.05 or P<0.01). Among the groups, the LFWJD medium-and high-dose groups had the most significant improvement in coagulating cold and blood stasis, with neatly arranged columnar epithelial cells in uterus, and the number of ovarian follicles was higher than that in the model group, especially mature follicles. The mRNA and protein expressions of PDK1, HK2, LDHA in uterus and ovaries were up-regulated in the model group(P<0.05 or P<0.01), while down-regulated in LFWJD medium-and high-dose groups(P<0.05 or P<0.01). The LFWJD low-dose group presented a decrease in the mRNA expressions of PDK1, HK2 and LDHA in uterus and ovaries as well as in the protein expressions of HK2 and LDHA in uterus and HK2 and PDK1 in ovaries(P<0.05 or P<0.01). The therapeutic mechanism of LFWJD against coagulating cold and blood stasis syndrome is related to the down-regulation of key glycolytic enzymes PDK1, HK2 and LDHA, and the inhibition of glycolytic activities in uterus and ovaries.


Subject(s)
Female , Animals , Rats , Ovary , Uterus , Ovarian Follicle , Lactate Dehydrogenase 5 , Glycolysis
2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 54-58, 2020.
Article in Chinese | WPRIM | ID: wpr-873085

ABSTRACT

Objective::To study the effect of Qingzao Jiufei Tang on the expression of key limiting enzymes hexokinase 2(HK2), phosphofructokinase 2(PFK2) and pyruvate kinase M2 (PKM2), and the glucose content in Lewis mice colon cancer cells. Method::A total of 50 male C57BL/6J mice were randomly divided into model group, chemotherapy group, and high, middle and low-dose Qingzao Jiufei Tang groups, with 10 mice in each group. The lung cancer cell model was established by injecting Lewis lung cancer cells into the right axilla. The high, middle and low dose groups were administered at the doses of 11, 5.5, 2.75 g·kg-1·d-1 for 2 weeks before modeling. The drug was administered through intraperitoneal injection at a dose of 50 mg·kg-1·(2 d)-1 in the chemotherapy group. The model group was intragastrically administered with an equal volume of normal saline. After the inoculation, the drug was administered for two weeks. Two weeks later, all of the mice were put to death, and tumor tissues were collected. The mRNA expression of HK2 was detected by Real-time PCR. the protein expression of PFK2 was detected by Western blot, the PKM2 activity was detected by enzyme-linked immunosorbent assay (ELISA). Result::Compared with the model group, mRNA expressions and activity of PKM2 in lung cancer cells of treatment groups were significantly declined, and glucose content increased significantly, with significant differences from those of model group (P<0.01). The PFK2 protein expressions in lung cancer cells of treatment groups (high, medium and low-dose groups) were significantly decreased (P<0.05, P<0.01). Conclusion::Qingzao Jiufei Tang could inhibit Lewis proliferation, and decrease the glucose intake in lung cancer cells. The effect targets may be the key rate-limiting enzymes HK2, PFK2, PKM2.

SELECTION OF CITATIONS
SEARCH DETAIL